Combinatorial Benders cuts for decomposing IMRT fluence maps using rectangular apertures

نویسندگان

  • Z. Caner Taskin
  • Mucahit Cevik
چکیده

We consider the problem of decomposing Intensity Modulated Radiation Therapy (IMRT) fluence maps using rectangular apertures. A fluence map can be represented as an integer matrix, which denotes the intensity profile to be delivered to a patient through a given beam angle. We consider IMRT treatment machinery that can form rectangular apertures using conventional jaws, and hence, do not need sophisticated multi-leaf collimator (MLC) devices. The number of apertures used to deliver the fluence map needs to be minimized in order to treat the patient efficiently. From a mathematical point of view, the problem is equivalent to a minimum cardinality matrix decomposition problem. We propose a combinatorial Benders decomposition approach to solve this problem to optimality. We demonstrate the efficacy of our approach on a set of test instances derived from actual clinical data. We also compare our results with the literature and solutions obtained by solving a mixed-integer programming formulation of the problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed-integer programming techniques for decomposing IMRT fluence maps using rectangular apertures

We consider a matrix decomposition problem arising in Intensity Modulated Radiation Therapy (IMRT). The problem input is a matrix of intensity values that are to be delivered to a patient via IMRT from some given angle, under the condition that the IMRT device can only deliver radiation in rectangular shapes. This paper studies the problem of minimizing the number of rectangles (and their assoc...

متن کامل

Benders decomposition and an IP-based heuristic for selecting IMRT treatment beam angles

In this paper, two Benders decomposition algorithms and a novel two-stage integer programming-based heuristic are presented to optimize the beam angle and fluence map in Intensity Modulated Radiation Therapy (IMRT) planning. Benders decomposition is first implemented in the traditional manner by iteratively solving the restricted master problem and then identifying and adding the violated Bende...

متن کامل

FLUENCE MAP OPTIMIZATION IN INTENSITY MODULATED RADIATION THERAPY FOR FUZZY TARGET DOSE

Although many methods exist for intensity modulated radiotherapy (IMRT) fluence map optimization for crisp data, based on clinical practice, some of the involved parameters are fuzzy. In this paper, the best fluence maps for an IMRT procedure were identifed as a solution of an optimization problem with a quadratic objective function, where the prescribed target dose vector was fuzzy. First, a d...

متن کامل

Combinatorial Benders' Cuts for the Strip Packing Problem

We study the strip packing problem, in which a set of two-dimensional rectangular items has to be packed in a rectangular strip of fixed width and infinite height, with the aim of minimizing the height used. The problem is important because it models a large number of real-world applications, including cutting operations where stocks of materials such as paper or wood come in large rolls and ha...

متن کامل

Fluence Map Optimization in IMRT Cancer Treatment Planning and A Geometric Approach

Intensity-modulated radiation therapy (IMRT) is a state-of-the-art technique for administering radiation to cancer patients. The goal of a treatment is to deliver a prescribed amount of radiation to the tumor, while limiting the amount absorbed by the surrounding healthy and critical organs. Planning an IMRT treatment requires determining fluence maps, each consisting of hundreds or more beamle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & OR

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2013